• Users Online: 156
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 1  |  Page : 13-19

Antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle against lead acetate-induced testicular toxicity in rat


1 Department of Pharmacology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
2 Department of Histology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
3 Department of Pharmacy Biology, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia
4 Department of Conservative Dentistry, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
5 Department of Microbiology, Study Program of Environmental Health, Polytechnic of Health, Surabaya, Indonesia

Correspondence Address:
Sri Agus Sudjarwo
Department of Pharmacology, Faculty of Veterinary Medicine, Airlangga University, Surabaya
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2305-0500.250418

Rights and Permissions

Objective: To investigate the antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle on lead acetate-induced toxicity in rat testis. Methods: Chitosan-Pinus merkusii nanoparticles were identified by dynamic light scattering and scanning electron microscope. The male rats were divided into control group (rats were given with distilled water); lead acetate group [rats were injected with lead acetate 20 mg/kg body weight (BW) i..p.], and the treatment group (rats were given the chitosan-Pinus merkusii nanoparticle 150 mg; 300 mg; 600 mg/kg BW orally and were injected with lead acetate 20 mg/kg BW). The testis tissues were collected to evaluate the malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), histological evaluations of testis damage, and the caspase 3 mRNA expression was measured by reverse transcription-polymerase chain reaction. Results: The dynamic light scattering showed that the size of chitosan-Pinus merkusii nanoparticle was (530.2±38.2) nm. The scanning electron microscope images of the chitosan-Pinus merkusii nanoparticles showed an irregular shape, and the morphology surface showed the rough surface. The treatment with lead acetate resulted in significantly increasing MDA level and caspase 3 mRNA expression, and significantly decreasing level of SOD and GPx when compared with control group. The treatment with the chitosan-Pinus merkusii nanoparticle 600 mg/kg BW but not 150 and 300 mg/kg BW significantly decreased the MDA levels, caspase 3 mRNA expression, and also increased level of SOD and GPx when compared with lead acetate group. The lead acetate induced loss of the normal structure of testicular cells and necrosis, whereas treatment with chitosan-Pinus merkusii nanoparticle inhibited testicular cell necrosis. Conclusions: It can be concluded that chitosan-Pinus merkusii nanoparticle protects rat testis from oxidative damage and apoptosis caused by lead acetate, through increasing antioxidant and inhibiting caspase 3 expression.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1156    
    Printed96    
    Emailed0    
    PDF Downloaded197    
    Comments [Add]    
    Cited by others 1    

Recommend this journal